Chronic Kidney Disease – an update

Arif Khwaja, FRCP, PhD Consultant Nephrologist Sheffield Kidney institute

Talk Outline

- eGFR and CKD staging NICE guideline
- Approach to CKD
- Cardiovascular risk
- Management of Diabetic Nephropathy
- Clinical cases

So who has the better kidney function?

Creatinine 120µmol/l eGFR = 39 ml/min/1.73m2

DAYS OF GRACE STOWARMS

Creatinine 120µmol/l eGFR = 77 ml/min/1.73m2

Normal kidney function!!

CKD₃

Kidney function prediction equations

Cockroft and Gault equation

Estimated creatinine clearance (Cl_{Cr}) = $\frac{(140\text{-age}) \times \text{weight} \times 1.2}{SCr} \times (0.85 \text{ if female})$ where age is expressed in years, SCr in μ mol/I, and weight in kg¹⁰

6-variable MDRD15

 $170 \times (S_{Cr}/88.4)^{-0.999} \times age^{-0.176} \times (SU/0.357)^{-0.170} \times (SAlb \times 10)^{+0.318} \times (0.762 \text{ if female}) \times (1.180 \text{ if black})$ where S_{Cr} = serum creatinine in μ mol/I, SU = serum urea in mmol/I, SAlb = serum albumin in g/I, and age is expressed in years

4-variable MDRD¹⁶

186.3 x $(S_{Cr}/88.4)^{-1.154}$ x age^{-0.203} x (0.742 if female) x (1.21 if black) where S_{Cr} = serum creatinine in μ mol/l, and age is expressed in years

Modified 4-variable MDRD (traceable by isotope dilution mass spectro

 $F \times 175 \times (S_{Cr}/88.4)^{-1.154} \times age^{-0.203} \times (0.742 \text{ if female}) \times (1.21 \text{ if black})$

where F = correction factor, S_{Cr} = serum creatinine in μ mol/I, and age is

KDOQI:

Kidney and dialysis quality initiative is a set of guidelines produced by the US National Kidney Foundation

UK CKD NICE Classification

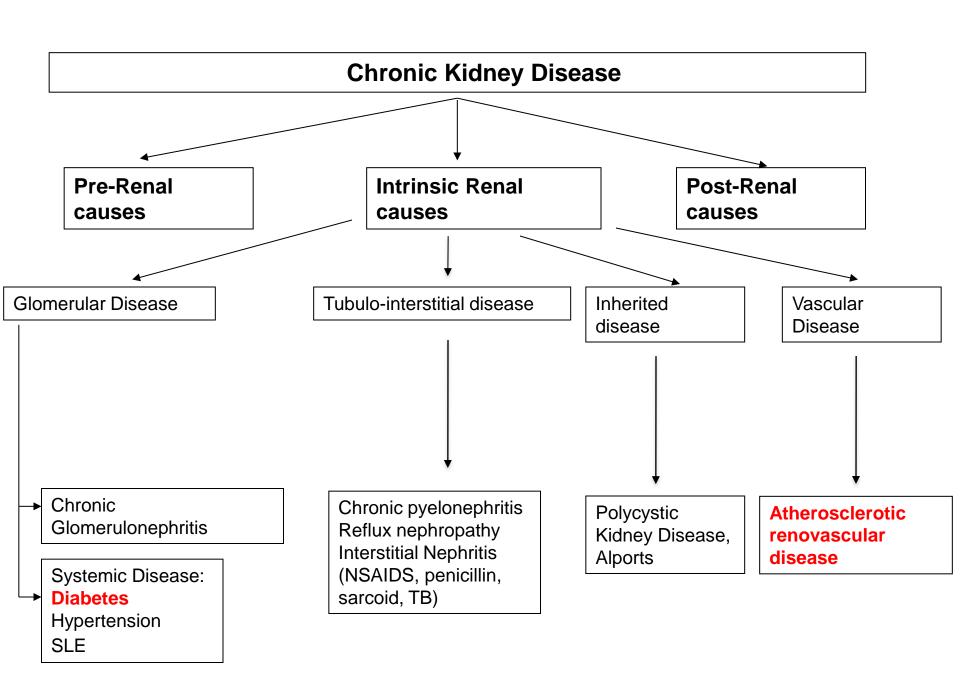
Stage	GFR (ml/min/1.7 3m ²)	Description	
1	≥ 90	Normal or Evidence of kidney damage: evidence Proteinuria /	
2	60–89	Slight dec with other Structural abnormalities	
3A	45–59	Moderate • E.g. Horseshoe kidney	
3B	30–44	with or will kidney da	
4	15–29	Severe decrease in GFR, with or without other evidence of kidney damage	
5	< 15	Established renal failure	

^a Use suffix (p) to denote presence of proteinuria when staging CKD

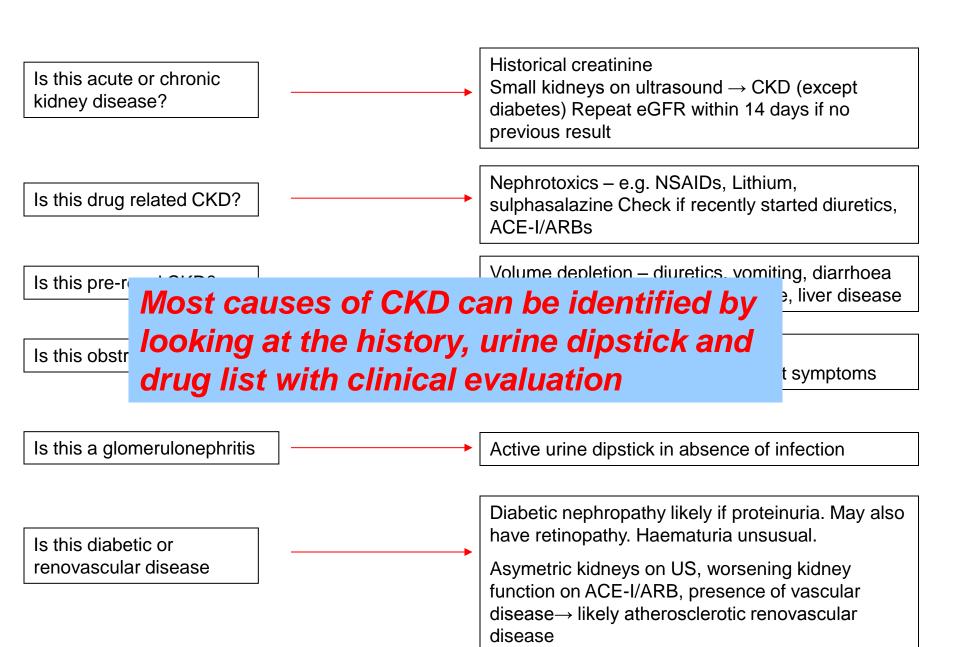
CKD KDIGO/NICE Classification- 2013/14

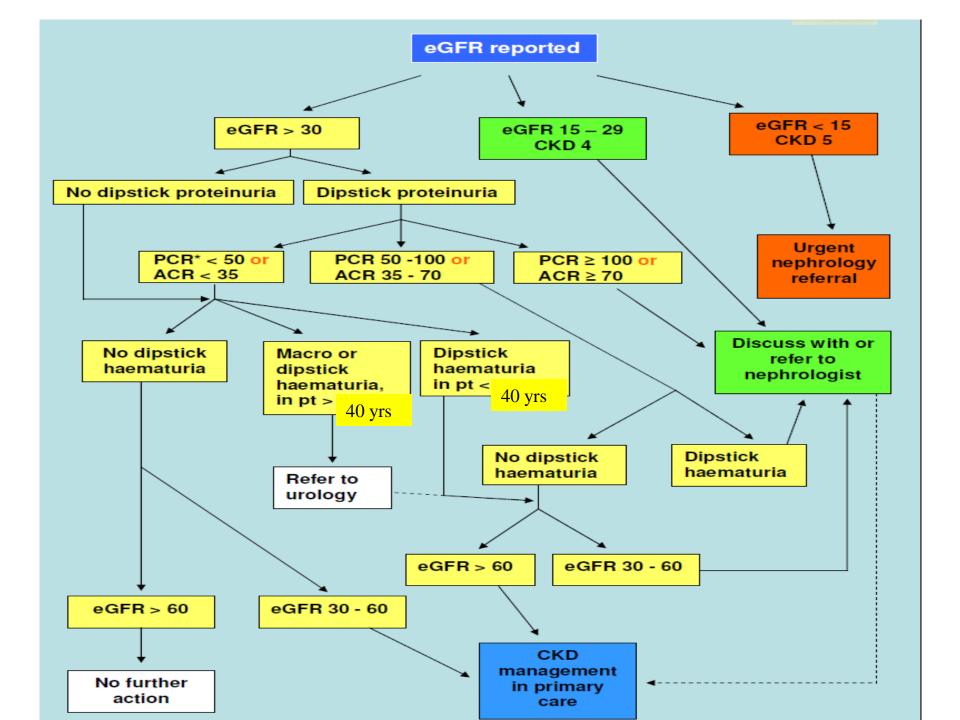
	Documents of OKD to OFD			Persistent albuminuria categories Description and range		
_				A1	A2	А3
Prognosis of CKD by GFR and Albuminuria Categories: KDIGO 2012			Normal to mildly increased	Moderately increased	Severely increased	
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol
£	G1	Normal or high	≥90			
categories (ml/min/ 1.73m²) Description and range	G2	Mildly decreased	60-89			
	G3a	Mildly to moderately decreased	45-59	ĺ		
	G3b	Moderately to severely decreased	30-44			
GFR cat De	G4	Severely decreased	15-29			
0	G5	Kidney failure	<15			

- •A2 equivalent to the old term of microalbuminuria
- Based on CKD-EPI equation rather than MDRD
- Categories rather than stages

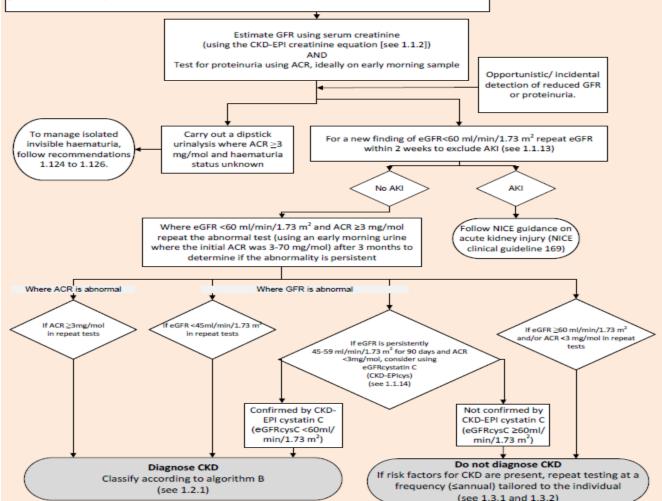

KDIGO-NICE Classification

- Recommend using eGFR-Cystatin C-creatinine for those with no other evidence of CKD and eGFR between 45-59mls/min/1.73m².
- If Cystatin C based eGFR normal (and no albuminuria/structural abnormalities) then don't label these people as having CKD


Talk Outline

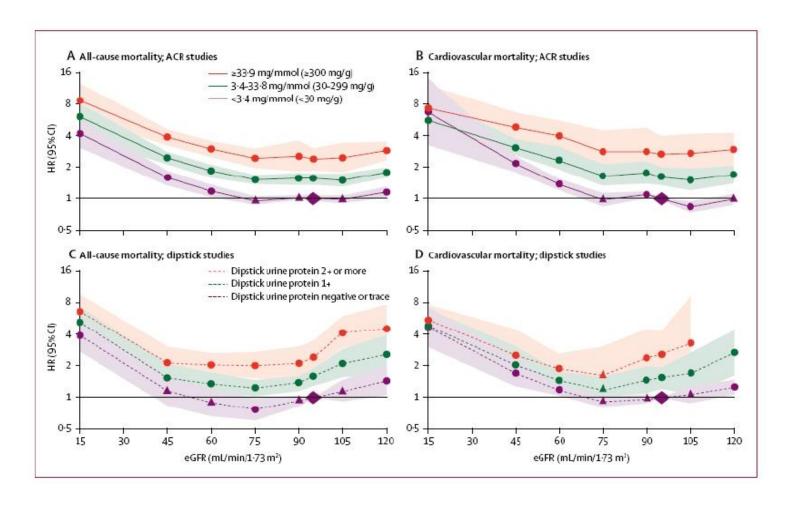

- eGFR and CKD staging
- Approach to CKD
- Cardiovascular risk
- Management of Diabetic Nephropathy
- Clinical cases

Clinical approach to CKD



Offer testing for CKD using eGFRcreatinine and ACR to people with any of the following risk factors:

- diabetes
- hypertension
- acute kidney injury
- cardiovascular disease (ischaemic heart disease, chronic heart failure, peripheral vascular disease or cerebral vascular disease)
- structural renal tract disease, recurrent renal calculi or prostatic hypertrophy
- multisystem diseases with potential kidney involvement for example, systemic lupus erythematosus
- · family history of end-stage kidney disease (GFR category G5) or hereditary kidney disease
- opportunistic detection of haematuria.


Monitor eGFR at least annually in people prescribed drugs known to be nephrotoxic.

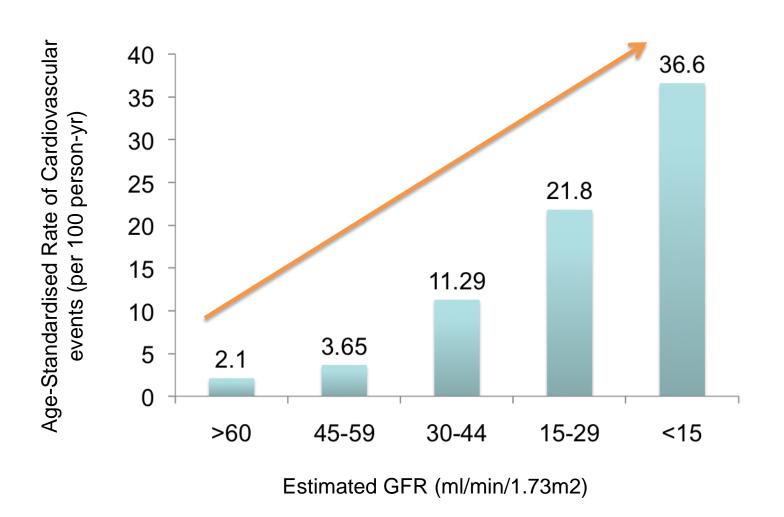
(see 1.127 and 1.1.28)

Increasing albuminuria and adverse outcomes

KDIGO CKD prognosis consortium, *The Lancet* May 2010

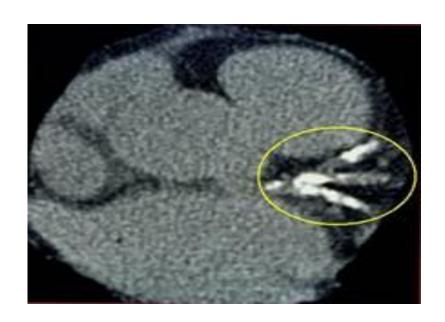
Albuminuria – the terminology

- Microalbuminuria: Negative dipstick but elevated ACR
 - ACR = 70 mg/mmol ≈ PCR = 100 mg/mmol
 - PCR = 100 mg/mmol ≈ 1gram/24 hour urinary protein excretion
 - Can use ACR or PCR

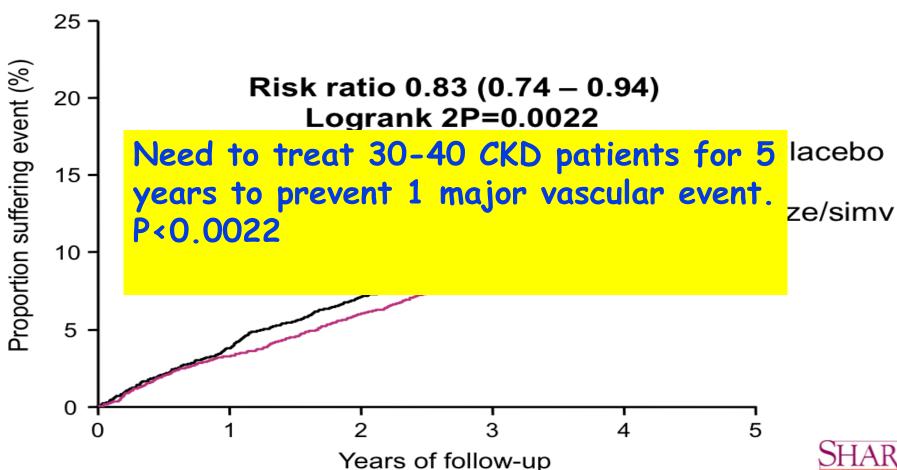

Urinary protein concentration equivalents

	Dipstick	Urinary PCR, mg/mmol (urine protein mg/L)	Urine Total Protein excretion mg/24 h (g/24 h)	Urinary ACR, mg/mmol	Urinary Albumin excretion, µg/min (mg/24 h)
Normal	Negative	< 15 (<100)	<150 (<0.150)	<2.5 (males), <3.5 (females)	<20 (<30)
Microalbuminuria	Negative	< 15 (<100)	<150 (<0.150)	≥2.5-30 (males), ≥3.5-30 (females)	20-200 (30-300)
'Trace' protein	Trace	15-44 (100-299)	150-449 (0.150- 0.449)		
Clinical proteinuria ('macroalbuminuria')	1+	45-149 (300- 999)	450-1499 (0.450-1.499)	>30	> 200 (>300)
	2+	150-449 (1000- 2999)	1500-4499 (1.500-4.499)		
Nephrotic range proteinuria	3+	≥450 (≥3000)	≥4500 (≥4.500)		

Talk Outline


- eGFR and CKD staging
- Approach to CKD
- Cardiovascular risk
- Management of Diabetic Nephropathy
- Clinical cases

Increased cardiovascular risk in CKD



Vascular calcification in CKD

SHARP – impact of lipid reduction on major vascular events

Baigent C et al. The Lancet. 377;9784; 2181-92; 2011

Diabetic Nephropathy – how to manage

- Assess the patient to make sure this is diabetic nephropathy proteinuria, evidence of retinopathy
- Control BP if possible
- Control lipids
- Glycaemic control if possible
- Smoking, exercise, salt restriction
- MONITOR!!!!

BP targets in CKD and Diabetes – the guidelines

• People with diabetes and hypertension should be treated to a systolic blood pressure goal of <140/80 mmHg. American Diabetes Association

•Lower systolic targets, such as <130 mmHg, may be appropriate for certain individuals, such as younger patients, if it can be achieved without undue treatment burden. American Diabetes Association

BP targets in CKD and Diabetes – the guidelines

- Target < 140/90 KDIGO/NICE guidelines (1B)
- If ACR > 2.5mg/mmol (males) or 3.5mg/mmol (females) the target BP
 <130/80 KDIGO/NICE guidelines (2D)
- Use ACEi/ARB if ACR between 3-30 mg/mmol KDIGO/NICE guidelines (2D)
- Use ACEi/ARB if ACR >30 mg/mmol KDIGO/NICE guidelines (1B)

BP targets in diabetic CKD – personal view!

- Target of < 140/90 or less will be appropriate in many type 2 diabetics
- •130/80 in those with type 1 diabetes
- ACEi/ARBs benefit those in Type 1 diabetes and Type 2 with heavy proteinuria
- •Non diabetics: <140/90.
- •Non-diabetics with proteinuria (PCR>100): 130/80

Individualise care... and targets

Stages of CKD^a and frequency of eGFR testing

Stage ^b	eGFR (ml/min/ 1.73 m ²)	Description	Typical testing frequency ^c	
1	≥ 90	Normal or increased GFR, with other evidence of kidney damage	12 monthly	
2	60–89	Slight decrease in GFR, with other evidence of kidney damage		
3A	45–59	Moderate decrease in GFR,	6 monthly	
3B	30–44	with or without other evidence of kidney damage		
4	15–29	Severe decrease in GFR, with or without other evidence of kidney damage	3 monthly	
5	< 15	Established renal failure	6 weekly	

Check FBC in CKD 3B,4,5 – target Hb 10.5-12.5

Check calcium/phosphate in CKD 3B,4,5

Proteinuria - annual

May want to check PTH and vitamin D in 4,5

Criteria for referral

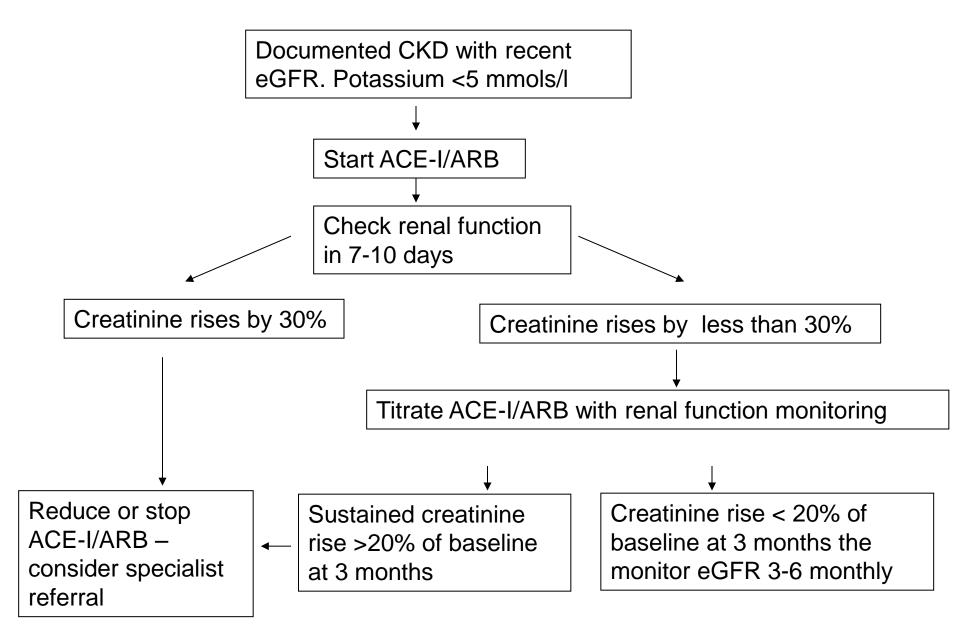
- Advanced CKD 4/5... but many elderly with stable CKD 4 don't need referral
- Deteriorating and heavy proteinuria (ACR>70 and not due to diabetes)
- ACR>30 + haematuria
- Sustained decrease in GFR of 25% or more, and a change in GFR category or sustained decrease in GFR of 15 ml/min or more within 12 months
- Sustained Rapidly declining eGFR requires referral

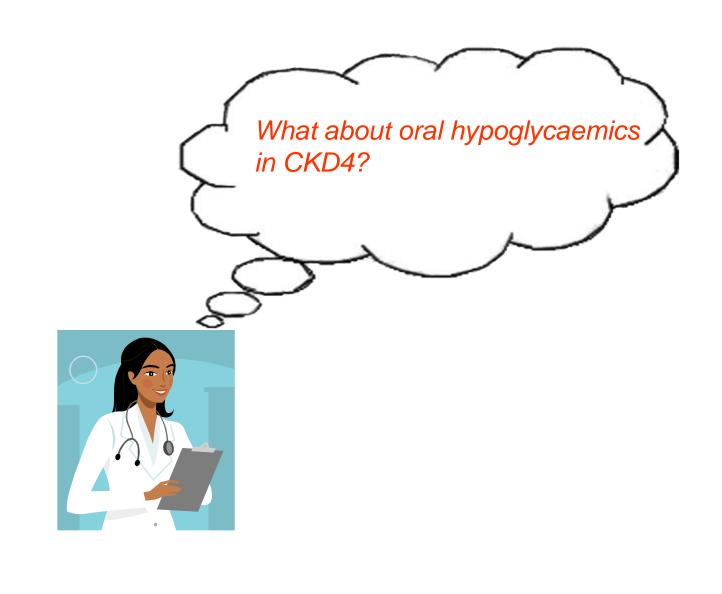
Referral advice

 Many patients meet the NICE criteria but may not need referral but just advice

Email advice: sht-tr.CKDEnquiry@nhs.net

What do I write in referral?

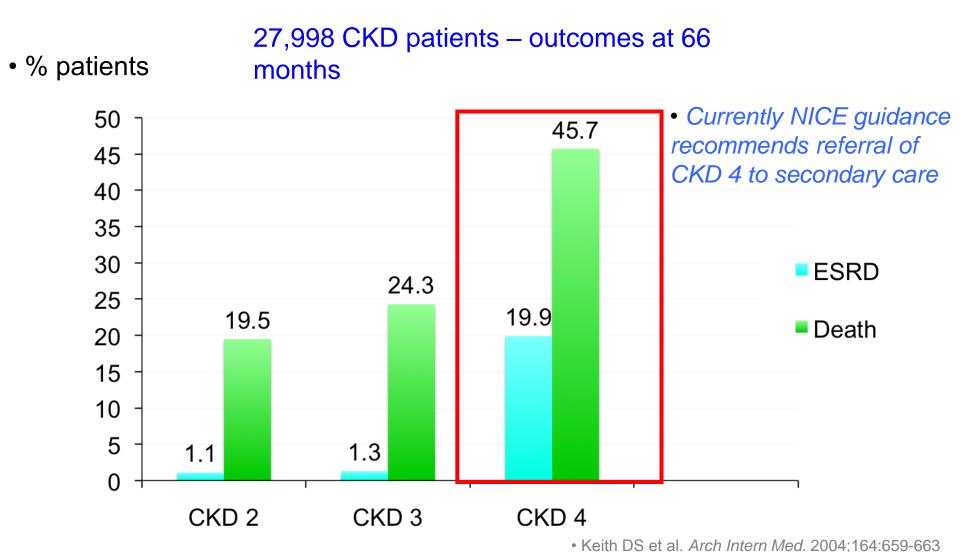

- A clinical question!!
- Drug history, historical and current creatinine
- BP
- Urine dipstick and proteinuria
- Ultrasound (maybe)

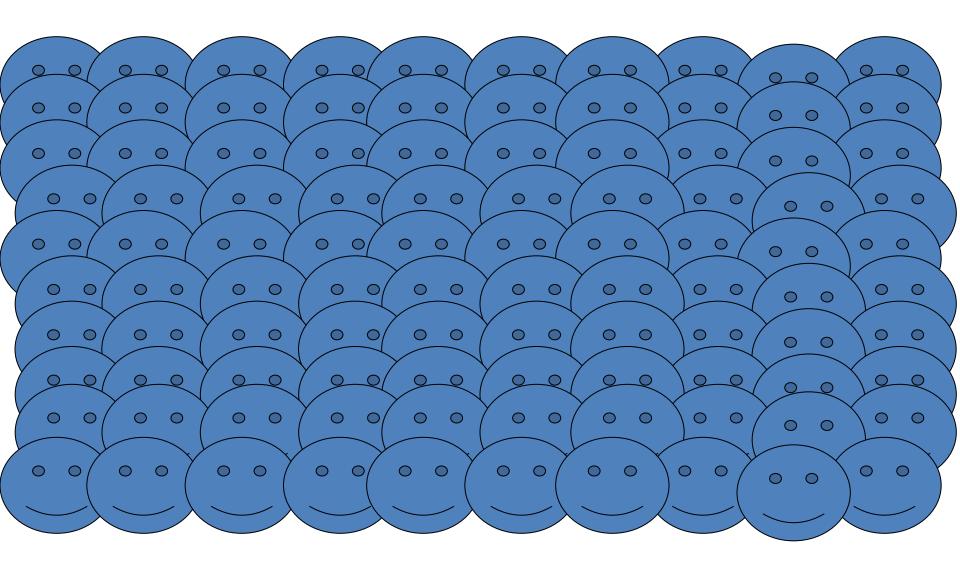


ACE inhibitors in CKD

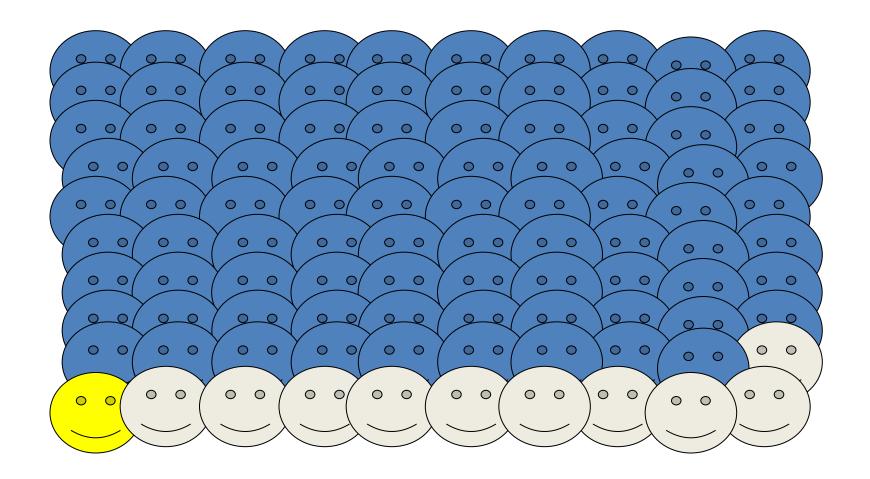
- ACEi/ARBs are good agents for BP control
- More effective when used with salt restriction or diuretic
- Benefit most in those with heavy proteinuria
- Care in those with vascular disease
- 'Sick day rules' i.e. don't take when unwell

Algorithm for ACE-I/ARB use in CKD



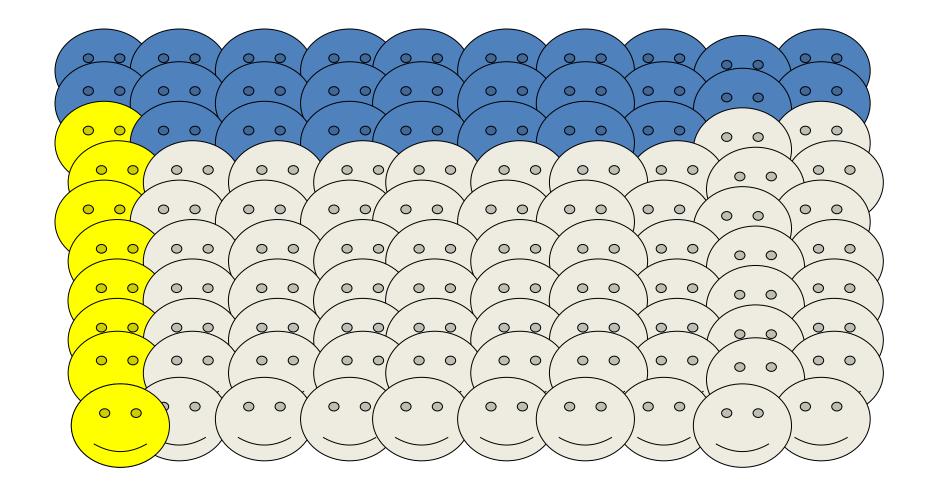

Hypoglycaemics in CKD 4

- Metformin cant be used when GFR<30 not nephrotoxic but risk of lactic acidosis
- Gliclazide is safe
- Linagliptin no dose reduction
- Sitagliptin reduce dose to 50 mg od if eGFR 30-50mls/min and 25mg od if eGFR<30mls/min
- Saxagliptin 2.5 mg od in CKD 3, caution in CKD 4


Death – the key outcome in CKD

100 patients with eGFR < 60

(Monday afternoon in Outpatients)


1 year later

Renal replacement therapy

Death

10 years later

Renal replacement therapy

Death

Conclusion

- Management of CKD and diabetic nephropathy focussed on BP control (140/80 good enough in most cases)
- Lipids, smoking, glycaemia, lifestyle, salt
- ACEi/ARBs use is fine but patients should be monitored
- USE ADVISORY SERVICE many elderly with CKD4 don't need to see a nephrologist

Useful Links

 http://www.sheffield-kidneyinstitute.org/education-andtraining/primary-care-nephrology

Email advice: sht-tr.CKDEnquiry@nhs.net